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We study Kac's nonlinear model of the Boltzmann equation when the cross sec- 
tion o(O) does not satisfy the special symmetry condition o(0)= ~(Tr-0). We 
determine a differential system for the Laguerre moments of the odd and even 
velocity parts of the solutions. We consider the spatially homogeneous model in 
1 + 1 dimensions (velocity v and time t) when the even velocity part of the 
solution is provided by the Bobytev-Krook Wu closed solutions and study the 
associated odd velocity part. We find that the solutions depend on the 
microscopic models of a(0). For one class of o(0), which has sums of exponen- 
tial terms for the Laguerre moments, we establish the relations allowing the con- 
struction of the time-dependent solutions associated with any initial dis- 
tribution. We find sufficient conditions on or(0) and on the even part such that 
the Laguerre series of the odd part converges. We establish a criterion for a 
well-defined linear combination of the moments cross section, and we check its 
validity for different numerical examples. We find that if the relaxation time for 
the even part is smaller than the corresponding one for the odd part and if the 
initial distribution has a narrow peak, then the Tjon effect exists for the com- 
plete B.K.W. solution (even + odd parts). 

KEY WORDS: Nonlinear equations: Boltzmann equation; relaxation to 
equilibrium; spatially homogeneous Boltzmann equation; statistical physics; 
microscopic models of cross sections, 

1. I N T R O D U C T I O N  

I n  th i s  p a p e r  (see a l so  Ref. l )  we s t u d y  t he  s o l u t i o n s  of  t he  n o n l i n e a r  K a c  
m o d e l  (2,3) 
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(a, + vOx) f(v,  x, t) 

v' = v cos 0 - w sin 0, 

[f(v ' ,x ,  t) f (w ' , x ,  t ) -  f (v ,x ,  t) f (w ,x ,  t)]  dw dO 
(1.1) 

~ = (cos 0)" a(O) dO, O'2n = (cos 0 sin 0) 2" a(O) dO, 

a 2 - -  r l  "~- T3 = 0 ,  t 0 = l ,  0 < c < ~  

c and d being constants adjusted in such a way that f(v,O)>O. We 
emphasize that the important new fact is the requirement of a condition on 
a(O) for the existence of the B.K.W. odd mode (contrary to the B.K.W. even 
mode). 

The removal of the assumptions a ( 0 ) = c o n s t  or a ( 0 ) = a ( n - 0 )  
enlarges the class of solutions. Further it permits the introduction of 
microscopic conditions into the problem of the existence of the Tjon (8) 
effect. When this effect exists, it may produce at intermediate time a pop- 

(1.2) 

w' -= v sin O + w cos O, a( O ) = a( - O ), 

I +~ a(O) dO =ao= 1 

when the three variables v, x, t are reduced to only two: either v, t for the 
spatially homogeneous case or v, x for the stationary case. (1~ The model, 
originally proposed by Kac (2) for f(v,  t), was extended by Uhlenbeck and 
Ford (3~ for f(v,  x, t). 

Here we are interested in the f(v, t) case. Let us decompose f into its 
even f+ (v ,  t) and o d d f - ( v ,  t) parts with respect to v. If in addition to the 
microscopic reversibility property a ( 0 ) = a ( - 0 ) ,  we assume the special 
symmetry a ( 0 ) = a ( ~ - 0 ) ,  [e.g., a (0 )=cons t . ] ,  then (4) the odd part 
becomes trivial: f - = f - ( v . O ) e  -t, without any link with the even part. 
However the Kac model is more interesting when the odd part is non- 
trivial. It has been shown by Ernst (4) that the even part has an exact 
solution, the so-called Bobylev-Krook-Wu (5'6~ solution (hereafter called 
B.K.W. even mode). If a(O)vL a (n -0 ) ,  then this even mode has a closed- 
form nontrivial odd partner and (7~ a nontrivial solution f =  f+  + f 
exists for the Kac model 

f + (v, t) = - ~  e-b~2/2 [ ~ - ~  + b ( b -  l ) V-~2 ], 

f = ~ b  e dvb by2~2 ~-~ e -(~~ ,l)t, b = (1 - ce-~2t) -1 
Z G  
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ulation of high-velocity particles larger than the one present at initial time 
or at equilibrium. The B.K.W. even mode alone cannot lead to the Tjon 
effect and consequently cannot represent a general feature of the solutions 
relaxing to equilibrium (other even solutions exhibit this effect). Adding 
just its odd partner, then the Tjon effect can exist. (7) Further, the impor- 
tance of the effect depends on microscopic conditions. For the same initial 
conditions, f (v ,  0) the Tjon effect is present or absent depending on the 
model chosen for a(O). 

In this paper we investigate whether or not these interesting properties 
are restricted to the odd B.K. IV. mode or exist for a general class of  non- 
trivial odd part, f (v, t). We give up the search of exact solutions, do not 
retain the special symmetry a(O) = a(rr - O) and try to obtain a general for- 
malism for the odd part f - .  A summary of the present results is given in a 
Note. (9) 

In Section 2 we establish some general results for the (1 + 1 + 1)- 
dimensional problem f (v ,  x, t): namely, the equations for the Laguerre 
moments ( - 1 ) " D  + when we expand f+ ,  v - i f  - into Laguerre 
polynomials L~ 1/2. 

In Section 3 we come back to the spatially homogeneous case f (v ,  t), 
assuming that f +  is given by the B.K.W. even mode and investigate the 
possible associated odd p a r t f  or equivalently the Laguerre sets (D2(t)).  
We first show that if the distribution function is positive at the initial time 
and if the even velocity part for all time values is positive (as is the B.K.W. 
even mode) then the distribution function is positive at all times. 

Second we study the properties of the D2 (t) obtained from integration 
of a linear differential system. For n = 0 ,  1 they are arbitrary: 
D 2 = d ~  exp(Eont), E0~ = - l + r 2 n + l < 0  and, for n~>2 they are recur- 
sively determined, integrating either at t = 0 or oo: 

D / ( t ) = e  e~ Dn(tlim)+ F)n(t')dt' , tlim=O or oo (1.3) 
lira 

/3, is a linear combination of the D~-, q ~< n -  2, with coefficients deter- 
mined by the Laguerre moments of the B.K.W. even mode. D n depends at 
most on n integration constants chosen among d~- =Dq-(0) or 
d q = l i m ~ [ D q - e x p ( - E o q t ) ] .  The two representations are equivalent 
only if D, -~ 0 as t --+ oo and this result does not hold for all a(O) models. 
The general solution is a superposition of simple solutions which are 
classified following the properties of a well-defined linear combination of 
the moments of a(0): 

f lNn=~C2N+l - -T2n+l - - (n - -N)~72 ,  0"2-~- T 2 - - T  4 (1.4) 
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We obtain simple solutions characterized by two properties: all D~- 
have only one time dependance given mainly by an nth power of e -`2t and 
there exists an infinite number of d~- = 0 which are computed by only one 
or two parameters. We find three classes of simple solutions that we call 
fundamental solutions: those with (i) /~o, r  Vn, (ii) /~ol = 0  (this family 
includes the B.K.W. odd mode, (iii) /~oN=0 for some N >  1 value where 
D,- can include a product of t by an exponential. In case (i) the d~- are 
determined by one parameter and in the (ii) and (iii) cases by two 
parameters. Because, in general, we have no analytical guarantee that these 
fundamental solutions correspond to positive distributions, we cannot use 
them directly for physical application. However, the fundamental solutions 
are the building blocks of the physical solutions. 2 

In order to construct the physical solutions we restrict our study to 
/~on r 0, Vn model. We give as input an infinite number of d~- such that 
f (v ,  0) > 0 and we know that f (v ,  t) > 0. We determine the general explicit 
relations which give recursively all the parameters of the different exponen- 
tial terms of the solution. These solutions which represent infinite mixing of 
class (i) fundamental solutions will be used for the study of the Tjon effect. 

Third the construction of a(0) models corresponding to the different 
classes is given for very simple models. 

At the end of Section 3 we establish the sufficient conditions in order 
that N2(t), the square of the norm of the solution f - ,  built up with the 
Laguerre series, exists for any t value finite or infinite. 

In the last (Section4) we report numerical calculations of odd 
solutions associated with the B.K.W. even mode and study the Tjon effect. 
In analogy with what was done by Hauge and Praestgaard ~11) for the 
Maxwell model with an even distribution, one can define a criterion 
explaining quite well the existence of the effect. Let us define the reduced 
distribution F(v, t ) = f ( v ,  t)/f(v, ~ ) ,  assume that the odd part f has a 
nonzero Laguerre moment Do ,  and compare, when both Iv1, t are large, as 
a first approximation, the contributions coming only from Do(t) ,  D~(t) ,  
the first odd and even Laguerre moments. One finds in this rough estimate 
that F -  1 is proportional to 

V l ( v 2 ) 2 e ( t 2  . . . . .  F -  1 - - - - - e  ~ x / ~  '~~ Do  (0) + ~ _ _ ) D ]  (0) (1.5) 

here D~-(0) = - c  2, ~odd = Z0 -- ~1, ~ . . . .  = 20- 2. If f -  -= 0 or Do(0  ) = 0, then 
F -  1 < 0 and there is no effect. If f -  is present, we note that its dominant 
behavior is small compared with that o f f  + (or lvJ ~v4), we can think that 

2 See the analogy and the difference with the Maxwell-Bobylev even case, Ref. 10. 
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there is no chance for the Tjon effect. But if "Cod d < "C . . . . .  and Iv], t large, the 
two terms can be comparable and F -  1 can have a zero which moves as t 
increases. Let us define a criterion 

crit = "Cod d - -  "[ 'even ~-- "CO - -  Z-I - -  20-2 (1.6) 

then for c r i t<0 ,  F - 1  can have a zero moving and we check this 
microscopic condition for different models. In an equivalent way we can 
speak in terms of relaxation times. If the relaxation time for the even part 
(z-even) I is smaller than the relaxation time for the odd part (%da) -1 then 
F--  1 can have a zero moving. The importance of the effect depends also on 
the initial conditions and we check this property. 

2. EQUATIONS FOR THE LAGUERRE M O M E N T S  

Here we look formally at the Laguerre moments for the odd and even 
parts o f f  Taking into account a (0 )=  a ( - 0 )  the equations for the full Kac 
model are 

(~?,+%N~)f+(v)+v~?xf (v)= dO dwa(O)f+(v')f+(w ') (2.1a) 
1~ o o  

(2.1b) 

where N~-=~ +~_~f+(v,x, t) dv is the local density, ao=~++_~a(O)dO, and 
f-+(v) are simply written for f+(v, x, t) .... We notice that the right-hand 
sides of (2.1a, b) are, respectively, quadratic i n f  + and linear in f - .  

Assuming that a(O)=const, Kac has given expansions in terms of 
Hermite polynomials and deduced the system for the moments. Ernst, (4~ in 
the homogeneous v, t case, with the help of the Fourier transform, has 
given the equations for the Hermite moments. Here, for the full v, t, x case, 
the gradient term v~?x being present, we establish directly the equations for 
the Laguerre moments. We need, on the right-hand sides of (2.1a, b), a for- 
mula giving directly the integration of the product of two Laguerre 
polynomials in terms of Laguerre polynomials. Let us write 

f - ( v ,  x, t ) = / ~  ve-"/2 2 ( - 1 ) "  D#(x, t) L(, 1/2~ (2.2b) 
x/z~z 0 
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)~ being some normalization constant that we can choose at our con- 
venience. We substitute the expansions (2.2a, b) into (2.1a, b). In order that 
the collision term reproduce Hermite polynomials, Kac has introduced the 
"Boltzmann bracket." Here for the right-hand sides of (2.1a, b) we need 
[-especially for (2.1b)] the corresponding results for the Laguerre 
polynomials (see Section A1): 

= O) Lp+p, 

where ~/= 0 for L(p -v2~ or t /= 1 for L~p ~/2~. It remains to expand the left-hand 
sides of (2.1a), (2.1b), respectively, in terms of L21/2, Lln/2. We find (Sec- 
tion A2) 

~?tD,, + + 22~?~[(n + 1/2)D 2 +nD,+~]  + + q - Dq D,_qC~Bq,, (2.4a) 
0 

n 

q + - -  O,D2 +)o ~Ox(D2+D~++~)=~C, Dq Dn_qEqn (2.4b) 
0 

with Bqn , Eqn defined by 

Bqn = tT(0) COS 02(" q) sin 02q dO, Bo, = a(0)(cos 02" - 1 ) dO 
1z 

(2.5) 
Eqn= tT(O) cosO2(n-q)+lsinO2q dO, Eon= tT(O)(cosO2n+l-1)dO 

- - 7 2  - -  ~Z 

In Eq. (2.4a), because Boo = Bol + B~,  the right-handside for n--0,  1 are 
zero. We find c~tD0 ~ + )@xD o = 0 and ~?,D~- + 22t?x(-~D i- + D o ) = 0 which 
corresponds to conserved quantities. 

3. ODD W.K.B.  SOLUTIONS 

3.11. General Considerat ions 

We restrict our study to the spatially homogeneous case and show 
recursively that f(v, t )>0 /f3 both f(v,  0 ) > 0  and f+(v, t )>  0. Putting 

3 We  believe tha t  the first cond i t ion  is sufficient (see the s t a n d a r d  argument(~2)), bu t  are no t  
aware  of a r igorous  proof. 
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N~ = 1 in (2.1a, b) we obtain linear integral equations either for f o f f -  
w i t h f + e  ~176 ') as kernel 

f (v ,  t )= e-~~ O) 

for + dr' dOe(O) dcoe ~~ t~f+(co', t ' ) f (v ' ,  t ')dt' 

Iterating, we find f (v ,  t) = Z ~  f(~)(v, t) with f (0)  = e ~o, f (v ,  O) > O, 

f~")(v, t )=  e~~ ' e(O) dO dcof+(e) ', t ' ) f ( ' - ) ( v  ', t ' ) > 0  
yr o ~  

if f ( " - l ) >  0 

In particular this positivity property holds i f f  + is the B.K.W. even mode 
(1.2). 

All the proofs of this section are based on properties which are 
deduced from the positivity of  e(O). We define z = cos 0 and study linear 
combination of moments rm which can be written j'+~ dO 0(0) g(cos 0) and 
have a definite sign if g(cos 0) has a definite sign for ](cos 0)l ~< 1: 

b p , ~ = E o p - ( n - p ) e 2 < O  for p < n ,  O ' 2 = T 2 - - Z "  4 (3.1) 

Due to 0(0)>0,  we have (r2>0, --Eop='Eo--'C2p+l > 0  

tip,. = Eop -- Eo. - (n - p)e  2 

= r 2 p + l - Z 2 . + l - ( n - p ) ( r 2 - z 4 ) ,  p < n  (3.2) 

flp,.-tp,~ l = - f  e (O)(1-z2)z2(1-z2("-2)+l)dO<O, Vn~>2 

If tp, p+2<O-~tp,~<O, Vn>~2, Vn~>p+2 

tip, p+2: --re(o)Z2(1 --Z2)(1--Z 2(p 1)+1 @ I --z2p+I)dO~.O, Vp~ 1 

(3.3) 

tp,.<o if p>>. l, n>~ p +  2 

f l o , n= fe (O) (1 - z2 ) [ z+z3+z2" - l -n z2]canvan i shes ,  Vn>~l 

(3.4) 

flO,n+l--flo,n=--fe(O)(1--z2)z?(1--z2n l)d0<O, Vn>/1 

If flo,x=O-* fio,n <O, Vn > N, VN>~ 1 

fip, p+l=--fe(O) z2(1--Z2)(1--Z 2p 1)%0, Vp/>l (3.5) 
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In Section 3.2 we study the properties of the odd Laguerre moments D~-, 
solutions of Eq. (2.4b), assuming that we know f + or the set (D+). For  
n = 0 ,  1, the moments D~ have the form D~- _ eo~t = d~ e in which d~- are 
arbirary. For  n ~>2 we find these moments by integrating (2.4b). Let us 
define /3, and introduce the integration constant d~- or d, at zero or 
infinity by 

n--2 
b . = e  Eo.t ~ D+_uD;E._q,nC q 

0 

D~( t )=e  E~ ds + ff)~(t')dt' (3.6) 

I ;  ] D~( t )=e  E~176 ~l~+ D~(t')dt' (3.7) 

Choosing for f +  the B.K.W. even mode written down in Eq. (1.3) with 
b = [1 - ce -~2t] 1 and substituting the corresponding D + = 
( - c ) q ( 1 - q ) e  -q~2~ we find 

n - 2  
D , =  ~ e -f(~ q)~2+E~ (3.8) 

q=0 

with )~qn=(-c)n-q(1-n+q)CqEn q,n. The validity of (3.7) requires 
/3~ =+0 as t ~  ~ .  If this property holds then b n = d ~ - + ~ / 3 n ( t  ) dt. Ds 
depends upon n arbitrary constants, that we can choose from the dp, dp, 
p ~< n -  2. Note that for n = 0, 1 we have d~- - -d , .  If we retain only one 
d, # 0  or one d,7 v~ O, let us say for n = N, then we define a particular 
solution. However, for the solution d u with N > 0 ,  f dominates over f +  
and f violates posivity for large v. 

Let us choose d , ~ 0  only for n = N  and iterate (3.7) for n ~ N + 2 .  
Taking into account (3.8), we can integrate up to ~ only if fiNn < O. From 
the results (3.3) and (3.4) we can integrate for any N >  0, and consequently 
N - - 0  gives a particular case of these solutions. These dN solutions have 
time dependance given by only one exponential term. Another simple 
family of solutions deduced from (3.7) is ~/~-r for n = 0 ,  1 and fiol =0.  
Indeed, because of (3.5), in that case, we have fi0n < 0 for n >/2, and these 
solutions depend on two parameters, but still one exponential time term for 
the D,7(t ). On the contrary if f i 0 N = 0  for N>~2 then /~U--+ const as t ~  
and we cannot continue to use the representation (3.7) to seek simple 
solutions. If instead of (3.7), we start with (3.6), we can extend the 
existence of simple solutions for other flox values. We shall define as fun- 

damental solutions the sets (D2 = e (~ + b"')(d2 + t~,)), which for all n values 
contain only one exponential time term. 
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In Section 3.2.1 we investigate the first possible D 2 solutions of (3.6) 
for n < 4. In Section 3.2.2 we define three types of fundamental solutions or 
of sets (Dn) for n>>.N with N~>0 a fixed integer: (i) those for /~ON=0 Vn, 
(ii) those /10~=0, (iii) those with /~oN=0 for N > I .  t in  case (i) the 
solutions depend on only one parameter, d~ ; on two parameters, do, di-, 
in case (ii); and on do, d N in case (iii).] Howwever, in general (except the 
B.K.W. odd mode), the associated solutions f -  cannot be written down in 
closed form and consequently we cannot control analytically the positivity 
off(v,  0). A priori it is not excluded that, similarly to the Maxwell-Bobylev 
case (5<~ all the fundamental solutions (except the B.K.W. odd mode) 
violate positivity. Because we have no guarantee of the positivity of these 
solutions, they shall not be used for the construction of the physical solutions. 
In Section 3.2.3 we construct the physical solutions which will be used for 
the study of the Tjon effect. 

In Section 3.3 we give examples of a(0) models and in Section 3.4 we 
study the existence of the solutions v ~f in the Hilbert space spanned by 
the e-~2/2Lln/2(v2/2) orthogonal functions. 

3.2.1. Explicit Solut ions for  the First D n Moments .  In 
order to avoid divergences when t--, oe we choose Eq. (3.6) starting at 
t = 0. For n < 4 and arbitrary initial data and a(0) we determine the first 
moments D n. We discuss different possibilities coming from particular 
choices of dp and a(0). The study is done in Appendix B1. 

3.2.2. Determinat ion  of the Fundamental  Solutions.  The 
method is straightforward. We assume an ansatz for each family and 
relations that we verify for small n values, substitute into (3.6) and (3.7) for 
q ~ n -  2. We identify the left- and right-hand sides, reconstruct D~-, and 
verify that both the ansatz and the relations still hold for general n. The 
study is done in Appendix B2. 

3~2.3. General Solut ion w i th  Only Pure Exponential  
Terms .  We restrict our study to a(O) models such that fl0,n ~ 0 Vn >/2. 

The general solution is a superposition of the solutions of class (i) and 
iterating Eq. (3.6) we easily see that it is of the type 

n 2 

D n  = eE~ q- Z an+ 1,n ebm'nt' 
0 

b m , , = E o , , , - ( n - m ) a  2 (3.9a) 

Our aim is to determine the parameters am, n from the initial conditions 
f - ( v ,  O) or equivalently from the set (d 2). We substitute the ansatz (3.9a) 



190 Cornille 

into Eq. (3.6) for all n, integrate (recall/~or, 5 0  Yn ~> 2) and identify left- and 
r ight-hand sides. We find a linear system for the am,~" 

n - - 2  

ao0 = do ,  ao l=d~ ,  am+l,n~m,~=)~mnaom§ ~ 2qnam+l,q 
q = r n + 2  

n 2 

a o , = d 2  - ~ am+l,~, m = 0 ,  1 , . . . , n - 2  (3.9b) 
0 

This very simple system for the a m + l m  can be solved either at n fixed or at 
m fixed. At n fixed, in the s tandard  manner  we determine recursively firstly 
n = 2, secondly n = 3 ..... n - 1, n. At m f ixed we determine firstly a~,~ and ao2 
from ao0" 

n - - 2  

aln~O,~ = ")~onao0 + 2 }~qnalq , ao2 = d ~  - a 1 2  
q = 2  

secondly a2,. and a03 from aol" 

n 2 

a2nflln=)~lnao1 -t- 2 "~qna2q , a o 3 = d 3 - - a 1 3 - - a 2 3  
q = 3  

thirdly a3, n and a04 from a02: 

n 2 

a3nfl2,n = ~ 2 n a 0 2  q-  2 "~qnagq ' ao4 = d 4  - a 1 4  - a 2 4  - a 3 4  
q - 3  

and so on. This second method  is more  convenient  for the numerical  
calculations. The general solution D 2 (t) has at most  n arbi t rary constants  
dp, p = 0, 1 ..... n, but  this number  can of course increase with n. On  the 
cont rary  one can mix two, three.., fundamental  solutions of class (i) in such 
a way that  the solution has only two, three.., arbi t rary constants.  These 
mixings are obtained as part icular  cases of  the general solution 
Eq. (3.9a, b). In Appendix B3 we study the mixing of  two solutions N~, N2, 
N~ < N2 with two arbi t rary constants dNl  , dN2. The solution for n >~ N 2 is a 
sum of two exponential  terms of the type e x p [ E o N l - - ( n - - N 1 ) a 2 ] t  and 
exp[EoN2 -- (n -- Na)a2 ]  t. Fur ther  let us require that  the time dependence 
has one term for each n value. For  n = N 2  we must  have DN2=dN2 
e x p  l E o N ,  - -  ( N 2  - -  N1 )a2]  t = d N 2 ( e x  p EON 2 t) o r  ~NI,N2 = EON , -- EON 2 -- 
( N 2 - N 1 ) a 2  = 0 .  Owing to the results Eq. (3.3)-(3.5) we know that  this is 
possible only for /7O,N2 = 0 and if we exclude N 2/> 2 which corresponds to 
class (iii) we see that  the only possibilities are ~o,1 = 0 or the class (ii) with 
two constant  d o , d? .  
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3.3. Examples of a ( 0 )  Models 

In Appendix B4 we construct very simple a(0) models corresponding 
to fio,~ 4=0 Vn, flo~ = 0  and f i0u=0  for N > 2 .  

3.4. Existence Proof for the Odd Laguerre Series 

We recall that v - i f  - is written as a sum of Laguerre polynomials and 
the square of the norm of the solution is 

F(n + 3/2) 
U z ( t ) = ~ l D 2 ( t ) [ 2  F (n+  l) 

The details are given in Appendix C; we obtain two main results. The most 
general one is the following: 

N2( t )<  oo if N2(0 )< o% Ic!<l, and fGlcosOIdO<~ 
We note that the constraints on the B.K.W. even mode, the a(O) and 
f (v, 0), are very weak. However, the complete solution ( e v e n + o d d )  
relaxes toward a Maxwellian as t --* oo; there must exist another result say- 
ing that N 2-+0 when t-~ or. We recall that - E o n > 0 ;  let us assume 
infn(-Eon) # 0 ;  then one shows that N2(t ) ~ 0 when t ~ oo. 

4. ASYMPTOTIC  BEHAVIOR, TJON EFFECT, 
AND NUMERICAL CALCULATIONS 

4.1. Tjon Effect 

An important  property for the existence of the Tjon effect is the 
following. Let us call v (0) [v+(0) ]  the last negative [positive zero] of 
F(v, 0 ) - i  where F ( v , t ) = f ( v , t ) / f ( v ,  o v) is the reduced distribution 
function. If the effect exists, then as t increases the zero v (t) [or  v+( t ) ]  
moves toward - o o  (or +oo).  Consequently at intermediate times 
0 < t < oo we can have a population of high-velocity particles larger than 
the ones present (with the same velocity) at t = 0 or at equilibrium. The 
displacement of the zero will depend, as we shall see, on conditions on 
a(O). However the effect really exists only if the F >  1 values are substan- 
tially larger than 1 and this last condition depends on the initial conditions on 
f (v ,  0). 

If the B.K.W. even mode is present alone, then the Tjon effect does not 
exist because we know (13) that F <  1 for v2/2 > 4. Consequently, if the effect 
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exists, it must result from a competition between even and odd parts f-+. In 
order to study the moving of the zero toward infinity, we shall define a 
criterion, using ideas similar to those presented by Hauge and 
Praestgaard (11) for even distributions alone. Let us retain in the Laguerre 
sums the contribution coming from the first terms Do,  D i- L~ +1/2), 
D~ L~ 1/2. Consider t and Jvh large, L +1/2 ~- (-v2/2), L2 m ~- (1/2)(v2/2) 2, 
and obtain the rough estimate 

v 
e 2a2t F -  I~--f-~ doe -(~~ ~~ +dT e-(~~ . . . .  +. . .  

" 4 - -  

(4.1) 

where D f  = -c2e 2a2, for the B.K.W. even mode. 

(i) Let us further neglect di-, which means that we retain f o r f  -+ only 
their first Laguerre terms D o ,  D~ 

"~'Vle- [ c2 e('~ ( ~ )  2 ] l v l  x//-2 (4.2, F -  1 _ ~  (~0-~1) do s ign(v)-  

If d o sign(v)> 0, the bracket in Eq. (4.1) will have a zero increasing when t 
increases if a(O) satisfies the criterion 

crit = r 0 -  rl - 2a2 < 0 (4.3) 

In order to study the validity of this crude criterion, we shall investigate 
classes of a models (Section 3.3) where either the criterion has always the 
same sign or a transition occurs for which criterion changes sign. In both 
cases we shall check whether or not there is a moving of the last F -  1 zero. 
For instance if a = ( 1/2) [ 6 (0 - 0 ~ ) + 6 (0 + 0 ~ ) ], z = cos 0 ~, we find crit = 0 
for z ~-0.565. For a models of the Eq. (B.7) type and fl0~ = 0, the transition 
(crit = 0) occurs for z ~ -  0.707. On the contrary for the models of Eqs. (B8) 
and (B9), crit >0.  

(ii) At higher order of approximation we can try to introduce con- 
tributions from other Laguerre moments. This is of course necessary if D o 
or D~- is zero. If d o = 0, then Eq. (4.2) is replaced by 

C 2 f V 2 \  2 q 

F- l~ -~e - ( '~  V/~,v,31-~)e (~~ (4.2') 

c r i t ' = % - r a - 2 a 2 ,  zero moving if crit' < 0, d i- s ign(v)>0 (4.3') 

If d~-r  in the bracket of Eq. (4.2'), we have a supplementary term 
e(~l-'~)t(2/vZ)do sign(v) that we must compare with the di- term [ ~  > r3 or 
~3 > z~, sign(d o d i- )]... and so on if we introduce other moments. 
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Our purpose here is to use the criterion Eq.(4.3) as a 
phenomenological tool in order to test the main features of the effect, 
although we are well aware that a more complete analysis must include 
other Laguerre moments. 

Concerning the importance of the initial condition we remark that the 
B.K.W. even mode f+(v, 0) has two symmetric bumps and we shall see 
that the best effect is obtained when one of the two bumps disappears more 
or less. 

4.2. Solut ions Given by Initial Condit ions 

We choose the initial conditions [or the sets ( d , ) ]  such t h a t f - ( v ,  0) 
is a closed expression for which we can directly check the positivity of the 
s u m f + ( v ,  0 ) + f  (v, 0). We assume that the class of o(0) models belongs 
to class (i) where the associated solutions are superpositions of pure 
exponential terms. From the general formalism of Section 3.4 
[Eq. (3.9a, b)] we can compute all the coefficients a . . . .  Din, n of the solution 
at t v a 0. The simplest example is obtained by a sum of two exponentials: 

f (v, 0 ) = - - ~  Z L~/2 #iC7 
, ,/z i = l  

but of course other closed f -(v,  O) are easily constructed. 

4.3. Numerical  Calculat ions 

Starting with solutions (d;-) such that f - (v ,  0) are closed expressions 
and reconstructing the solutions at t > 0  with the general formalism 
[Eq. (3.9a, b)], we can at t = 0 both control the positivity f(v, 0) and the 
convergence of the Laguerre series for f - .  Owing to the product of v by a 
finite number of Laguerre terms ~2 (-1)%~/2(v2/2)d,, the convergence 
becomes very poor when Ivt is large and we need 50 Laguerre terms for 
reproduce correctly the solution Ivj <7.  For t > 0 ,  the convergence is 
slightly better and works for larger I v] values; this is due to the existence of 
exponential time-decreasing terms, but the previous problem is simply dis- 
placed to higher fvl values. When the initial conditions correspond to the 
B.K.W. odd solution [c~ =c ,  c2=1~2=0 in Eq. (4.4)] we can test the con- 
vergence of the Laguerre series for t > 0. 

From our theoretical analysis, conditions on o(O) and f (v, 0) con- 
trol, respectively, the displacement of the last ( F - 1 )  zero and the 

822/39/1-2-13 
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possibility of substantial F >  1 values. The Tjon effect is obtained with the 
most favorable conditions on both a(0) and f - ( v ,  0). In order to test these 
ideas we consider f - ( v ,  0) given by (4.4) and two classes of a models: 

(i) a ( 0 ) = ~  ~ )~i[6(0-0i)+6(0+0i)], cosOi=zi, % = 1  (4.5t 
l = l  

For M =  1, the transition (cr i t=0)  occurs for z l=cos01>0 .56 .  In 
Fig. 1 (crit = -0.242) the conditions on a(0) a n d f - ( v ,  0) are favorable for 
both a a n d f  ; in Fig. 2 (crit =0.331) only for f - ;  in Fig. 3 only for a; and 
in Fig. 4 neither for f nor for o-. It is remarkable that in Fig. 3, where 
f (v, 0) is very small we still observe the displacement of the zero [in 
accordance with the criterion of Eq. (4.3) which is independent o f f  (v, 0)] 
but the F >  1 values are very close to 1 and we conclude in that case that 
the effect does not exist. Now we still try to improve the a and f-(v, O) 
conditions. In Fig. 5f-(v, 0) is the same as in Fig. 1 but zl =0.9 instead of 
0.75 far away from the transition value, although crit = - 0 . 2 0 7  has a 
smaller modulus value. In Fig. 6a, b) where we observe the best effect, 
zl =0.9 is the same as in Fig. 5 but we improve the f - ( v ,  0) conditions by 
choosing a narrow peak. For this M = 1 case the normalization o-= 1 fixes 
2 =  1 and we have only one parameter. The criterion Eq. (4.3), cr i t= 
(1 - Zl)(1 - 2z 2 - 2z 3) has only one zero value: zl erit -- 0.56 and for [zl] < 1 
we observe the validity of the criterion for the moving of the F -  1 zero. 

I Fly,t) 

.~/.____ ~ ~......~..,.a.~ :f,:cZtl=: 5:05075 .~.~. t=lO ~t=15 

f-:C 1=05 [2 =2/3 Pl = 1 PZ =0.5 

-15 

I I I ~ , .  I I I ~ -6 -5 -/* -3 -2 -1 0 1 2 3 ~- 5 6 V 
Fig. 1. Plot of F(v,t) vs. v for c=0.5; c1=0.5, c:=2/3, /~1= -1, /12=0.5 in Eq.(4.4), 
zt =0.75 for ~(0) in Eq, (4.5), crit= -0.242. 



N o n n i n e a r  K a c ' s  M o d e l  1 9 5  

j F(v,t) 

A 2~- o" : Z l =  0.~ 
f*:C =0.5 

1.5 / ~ f-:C1=05 E2=2/3 IS4=-I p2=0.5 

f = 2 5 / / , / / / -  ~J~ \ ' .  " ' ,  

t : lO . / "  t : 5 /  / _.l "~ \J=5 \ f:lO 

-" / / I \ ", ", 
-" ./ / I \ ", 
_ J I I 

-6 -5 -4 -3 -2 -I 0 1 2 3 4 5 6 V 

Fig. 2. The same as Fig. I but zl =0.4, crit =0.331. 
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1.5 
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_ i I _  L- j ~ I _1 

-6 -5 -4  -3 -2 - I  

F(v,t) 

o : Z~ = 0.75 
f*:E =0.5 
f- : q = 0.5 C2=2/3 IJ1=-0,1 IJ2=0.05 

~~ .~ t=20 

=10 

f=5 

J _J I I t 
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Fig. 3. The same as Fig. l but ,u I = -0.1,/~2 =0.05, cr i t=  -0.242. 
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1.25t F(v't) 

'--~ _1 

t 25 / / / / r  

/ /  / /  / 05- 
t=lO / /  t=5// //// /// / 

I 1 l . f  i I I 
-6 -5 -~. -3 -2 - I  

o" : Zl =0.4 
f* : [  :0.5 
f-:[1=0.5 [2=2/3 p1:-0.1 p2=0.05 
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Fig. 4, The same as Fig. 1 but #1 = -0.1, p==0.05, z I =0.4, and crit=0.331. 
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Fig. 5. The same as Fig. 1 but z I = 0.9, crit = -0.207. 
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Fig.  6. ( a )  P l o t  o f  F(v, t) vs. v for  c = 0.5; c I = 0.43, c 2 = 0.69, #1 = - 1 . 0 3 5  #2 = 0.3, z I = 0.9, 
cr i t  = - 0 . 2 0 7 .  (b )  T h e  s a m e  as  Fig.  6a  b u t  p lo t  o f  F(v, t) vs. t. 
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Fig. 7. 
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Plot of the Izil < 1, Iz21 < 1 domain where crit < 0  (dotted region). 
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Fig. 8. Plot of F(v, t) vs. v for c=0.5,  c 1 =0.5, c2=2/3 , /q = - 1 ,  ]22=0.5 in Eq. (4.4); 
z I =0.9, z2 =0.8, 21 = 2 2 =  1/2 for a(0), c r i t=  --0.2343. 
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For M = 2, we have three parameters ).1, "~2 ~" 1 - 21, zl,  z2. In Fig. 7 
we choose 21 = 22 and the dotted region represents the z, ,  z2 domain where 

! L (1-z,)(l-2z~-2z~)<O crit = ~ . 
t = l  

We still verify the moving of the ( F -  !) zero, only in this dotted region, 
and in Fig. 8 for zl = 0.9, z2 = 0.8 we see the Tjon effect: 

1 0 M 
(ii) a ( 0 ) = ~ c o s ~  .~ ).i(cos 0Y, % = 1  (4.6) 

For  these smooth a(O) cross sections we have to take more terms, in order 
to observe the transition where the criterion changes sign and has 
appreciable negative values. For  M =  1, ~.1= 1, % - r l - 2 a 2 = 2 6 / 6 3  > 0  
and in Fig. 9 we see that the F - 1  zero is moving and though we choose 
for f (v, 0) a favorable narrow peak, there is no effect. For  M =  2, 22 = 
3(1 - 21), we have one parameter 21. a(0) > 0 requires 0.75 ~< 21 ~< 1.5 and in 
this interval the values of the criterion remain positive. We observe neither 
the displacement of the zero, nor the effect. For  M = 3 ,  (7/15))o3= 
1 - io  I - 22 /3  and we have (two parameters, a(O)> 0 gives a domain into the 

F(v,~) 

2 o=1/4cos 0/2 
f ' :  E :0.5 
f- :  C1=0.43 E2=063 1a1=-1035 #2=0.3 
crif. =0.412 

-1.5 

-T - . . ' - .  . .  
t.--20 7 /  i / / K L \ \  \ \  ~ "  f=20 

/ / / ~ \ \ \  

_ /  / / ~ \ ",~,- 
..../- t=5//  f=O/ \ t=O \\t=5 

-7 -6 -5 - / ,  -3 -2 -1 1 2 3 /+ 5 6 7 V 

Fig. 9. The same as Fig. 8 but a(0) = (1/4) cos 0/2 in Eq. (4.6), crit = 0.412. 
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"~1, [2 plane. Finally the vanishing of crit = [1 (26 /63 ) -  (743/30(105)][2 + 
23 [ 3986/(33)( 13 ) ] gives two subregions where crit > 0 or < 0 (dotted region 
in Fig. 10). In both subdomains we do not observe the Tjon effect if the 
zero moves, it moves slowly but still more slowly when crit > 0. Let us con- 
sider the same f - ( v ,  0) as in Fig. 9 and compare the zero v_(t) for two 
cases: J.1 = 0.2, [2 = 0.9, crit = -0.0179 and [1 = 0.32, [2 = 0.9, crit = 0.0116. 
In both cases v ( 0 ) -  ~ -2.2,  whereas v ( 5 0 ) = - 4 . 4  when c r i t < 0  and 
v (50)= -3 .2  when crit > 0. The drawback of the criterion is explained 
here by the fact that the modulus values of the crit < 0 are small, less than 
0.018. For  M =  4, we have one more parameter at our disposal and we find 
larger negative values for the criterion. We observe both the moving of the 
F - 1  zero and the Tjon effect [see Fig. 11 with a narrow f(v ,  0) peak]. 

0.90 - / 
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0.95 

a(O) = l/L, cos e/2  (~.1 +~2 cose +-~3 cos2O ) 

\ 
\ 

/~ cr 
\ \ 
\ \ 

\ / 

/ 

/ 

crif. > 0 

0.75 { { ] I - 

0.1 0.2 03 O.t+ 05 

Fig. 10. Plot  of the 21, J[2 region where  a(0)  > 0, t o = 1 and  crit < 0 (dot ted region).  
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Fig. 11. The same as Fig. 9, but 2~=0.078, ,t2=0.5, ,13=1.1916 , for a(0) in Eq.(4.6), 
crit = -0.075. 

4.4. Linearized Versus Nonl inear  Formalisms 

In the linearized version of the Kac model, the Laguerre moments 
are: Do ~ = 1, Di ~ =0 ,  D~ = d ~ e  -2~2', D~ = d f e  -3~ D+(t )  = 
d + exp[(Bon+B,n)t]; D 2 ( t ) = d 2 e  E~176 For  the first moments D +, n ~ 3 ,  
DT, n-N< 1, these moments are identical with those of the nonlinear for- 
malism. Consequently the discussion of the asymptotic behavior of the 
solutions, provided only these moments occur, is the same in both for- 
malisms (for instance the definition of crit and crit'). 

However let us remark that while the positivity of or(0) alone allows in 
both formalisms to prove that the D +, n > 3 decrease faster than Dr,  a 
similar property for Ds compared with D o,  Dr- is not so obvious [-owing 
to the nonpositivity of the odd ~(0) moments which enter into Eon]. More 
explicitly one can prove (similarly to what was done for the Boltzmann 
equation with Maxwell interaction (13)) that the full nonlinear D~ + decrease 
at least like exp(Bon + B, , ) t ,  i.e., the linearized ones; and secondly (Appen- 
dix D) for n > 3, exp(B0~ + Bnn)t decrease more than exp(-3cr2t  ). On the 
contrary for the odd part, in the linearized case, DT/D o = 
( d ~ / d o ) e x p [ - ( Z x - % n + l ) t  ] and the moments ~ l - % n + l  do not have a 
definite sign. 
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5. C O N C L U S I O N  

The aim of this paper was twofold. First we wanted to show that the 
closed B.K.W. odd mode (7/was not the only nontrivial s o l u t i o n f  § that we 
can add to the B.K.W. even mode f + .  We have developed a general for- 
malism that constructs time-dependent f - ( v ,  t) from a n y f  (v, 0). We have 
seen that the condition t l - t 3 - ~ r 2 = 0 ,  necessary for the B.K.W. odd 
mode, was not essential, but the crucial constraint is the microscopic one, 
0-(0) r ~r(rc - 0). Let us notice that the special symmetry a(0) = a(~ - 0) has 
no physical basis in a one-dimensional velocity model, like the Kac model, 
and that it was previously introduced (4) in order to simplify the formalism. 

Secondly we wanted to verify that the particular properties (7~ found 
for the Tjon effect (8) were not restricted to the B.K.W. odd mode. The 
B.K.W. even mode alone, f + ,  cannot exhibit this effect and consequently 
cannot represent a general feature for the relaxation to equilibrium of the 
Boltzmann equation. At least for the Tjon effect this drawback disappears 
for the complete solution f +  - f -  if we add for f -  either the B.K.W. odd 
mode or the odd solutions f -  studied in this paper. More generally, from 
this paper, it is clear that this effect cannot be well understood without the 
introduction of the odd part  f -  into the discussion. Let us briefly recall the 
Hauge-Praes tgaard  ~m argument for an even velocity distribution f+(v, t) 
alone. For  the reduced distribution F + (v 2, t) = f + (v 2, t)/f + (v 2, oo ), concer- 
ning the relaxation toward equilibrium one can, in a rough estimate, retain 
the contribution of the first Laguerre moment  D2 ~ (t) = d + e 2~2~ and for v 2, 
t large obtain F + (v 2, t ) -  1 - (d[/2)e 2~2t IV2/2I 2. Only two possibilities can 
occur: either d~- > 0, F >  1 and we have the Tjon effect or d~ < 0 and we 
have no effect (as is the case of instance for the B.K.W. even mode). Of  
course, in particular cases, corrections to this criterion can be necessary; for 
instance the third Laguerre moment  can be the dominant  one. ~13~ In 
general it is difficult to justify mathematically the Hauge-Praes tgaard  
criterion; however, it is a very good phenomenological  tool. (13) Let us now 
introduce the odd part  f -  and similarly retain the first odd Laguerre 
moment  d o e (~0-~)~. For  t, Iv[ large we find 

F(v, t)--l~--~2e--~~ +d]l__~T..~]~ 2 e(~Odd ...... ~t] 

with %dd = t0- -  t l ,  r . . . .  = 2a2. We define crit = road - t . . . .  = t 0 - ~ - 2% 
and we have three possibilities: 

(i) crit > 0, d~- > 0, then F >  1 and we have the Tjon effect. 

(ii) crit > 0, d + < 0, F <  1 and we have no Tjon effect. 

(iii) crit < 0, then F -  1 will have a zero v(t) moving along the v axis 
s ign(v)dJ-df  < 0. The effect will exist if this zero, at t = 0, is at the border 
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of a sufficiently narrow peak such that for t > 0 the peak will spread out 
with appreciable F >  1 values. [-Of course it can happen that d o = 0 or that 
the dominant contribution is given by Dc(t) and we must consider 
"Co--Z'3-- 20"2,... and so on.] 

In this paper, f +  is the B.K.W. even mode, d + = - c  2 and we have 
only verified the possibilities (ii) and (iii) for d~ < 0. It remains to check 
the correctness of this analysis, of the Tjon effect, for f + (v, t) solutions with 
dJ- >0.  

If we introduce the relaxation times: T~ven=(Z . . . .  ) 1 and Todd = 
(%rid) I of the even and odd parts of F -  1 the above discussion can be 
repeated. If Todd is smaller than Teven then the even part always dominates 
and the effect exists or not depending whether d + is positive or negative. If 
Todd is larger than Teven then there exists times t and velocities v where the 
odd and even contributions are comparable and the Tjon effect exists if the 
initial conditions are favorable or equivalently if the distribution has a 
narrow peak at t = 0. 

Let us recall that in the conservation laws ~fdv and ~fvZdv, only 
f+(v, 0) contributes, b o t h f - ( v ,  0) and cr(0) are not present. However, for 
a g ivenf+(v ,  0), in the possibility (iii), we can always m a n a g e f - ( v ,  0) and 
a(O) in order to find a narrow peak for f(v,O) and the constraint 
~o - r i - 2a2 < 0. From the above analysis of the different possibilities, then 
for any given f+ (v, O) we can always find macroscopic conditions o f f  (v, O) 
and microscopic conditions on ~(0) such that the Tjon effect exists. 

Finally we notice that the discussion of the asymptotic behaviors of 
the solution (existence or not of the effect) occurs with the first moments 
D~, D[, Do, D 1. All these four moments, satisfying linear differential 
equations, are identical with those obtained from the linearized version of 
the Kac model. Consequently the discussion and the criterion are the same 
in both nonlinear and linearized formalisms. However, owing to the non- 
positivity of the odd moments of ~(0), the comparison for higher odd 
Laguerre moments is not simple. 

A P P E N D I X  A 

A1. We want to prove the formula 

f a~ w2/# Lp,(-l/2) (7)L(p 1/2+rl){V~2) dWk~]N~ 

= ~ ( ~ ) ~  (P+P')[ (cos O) 2p+" (sin O) =p' _p+p, (v_~) P! p , ~  /,(-1/2 +,i) (A1) 

# > 0 ,  r / = 0  or 1, v ' = v c o s  O--wsinO, w'=  v sin 0 + w c o s  0. 
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Using the classical results for the Laguerre L +1/2 and Hermite 
polynomials 

( --1 )P H2p + .(x) = x" 2 2p + "L~ -1/2 + ")(x 2) (A2) 

q 

mq(O~lXl~-O~2X2)=q ! E o~PO~q "Op(Xl)Oq-p(X2),  r  ( A 3 )  
p=O 

f ~ e X2Hp(x) Hp,(X) dx = rcl/22Pp[ ~p,p, (A4) 
-oo 

min(p,p') 
r r r Y, r . ( - 2 )  CpCpHp r(X) mp, r(X)=Hp+p,(X) (A5) 

r = 0  

With the help of (A2) and (A3) we find for the Laguerre polynomials 

( 7 ) ,  sin0,  +  ( V , ,j2+0, = 
\ 7 / i  Lp -2--2P-g~ P[ pt=o (P-71 i ~ - - -  77j-1 )t 

( ~ )  ( ~ )  (A6) • Hpl H2p+~-pl 

L(pT,/Z) ( ~ ) =  (-1)P" (2P')! 2, P~ (sin O)Pi(c~ O) 2p'-pl 
22P' (P')I p o (p'~)!(2p'-p'~)! 

(A7) 

In order to obtain the left-hand side of (A1) we multiply both (A6) and 
(A7) by e-W2/"# -1/2, integrate over w from - o e  up to +0% and the 
orthogonality property for the Hermite polynomials gives the restriction 
2p' - P'I -- 2p + t / -  Pl = P2. Consequently the left-hand side of (A1) is 

(P')!P! I inf(2p + ~'2p') (_2)P~C2~+ (c2----~0)2p+" (si2----~0)2p' x ~  _ p~o .C2~,'H2p+. p2 

X H2p' p2 22p+ 2p'+ tt 

From (AS) we see that the bracket is just O2p+Zp,+tT(V/N~) a n d ,  with the 
help of (A2), (AS) is just the left-hand side of (A1). 

A2. We deduce from Eqs. (2.1a, b) the system for the Df  when 
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f + ,  vf satisfy the expressions (2.2a, b). With the help of (A1) we find for 
the right-hand side of Eq. (2.1a): 

e - v 2 / 2  

(2rc)1/2 ~ L(.-1/2)(--1)" ~ Dq + Dn + q Cq d f o'(0) COS 02q(sin O) 2(n-q, dO 
q = O  

(A9) 

For  the second term at the left-hand side of (2.1a) we use the relation 
xL1/2(x) = (n + 3/2) L (. 1/2)(x)- (n + 1) L(~l(2)(x) so that the whole left- 
hand side reads 

e ~21~(-1)~L~-l/2)[(O'+a~ D2+D~ ) ]  
(2~) -1 

With the help of (A1) we find for the right-hand side of Eq. (2.1b) 

2ve V:/2 ~ f 
(2rc)1/2 } '~(--1) 'L~ 1/2) CqD; qD + o-(0) cos0 2(" q)+lsinO2qdO 

n q = 0  

For the second term at the left-hand side of (2.1b) we use L~ I / 2 ) ( X ) =  

L~12(x)- L~ 12_ t(x) and obtain for the whole left-hand side 

1)8  - -  v 2 / 2  

~, (-1)'L~./2[(Ot + aoN ~ )D~ 2 + Ox(D, + + D++ ~)] (2re) 1/2 

A P P E N D I X  B 

131. First D L- M o m e n t s .  As n increases the number of different 
time-dependant terms for D 2 increases too. However, for particular initial 
data and a(O), D2 has only one term, which turns out to be essentially a 
power of e ~2t. We use it with Eq. (3.6) starting at t = 0. If D o = 0, D 1 = 0, 
they are arbitrary while every other moment D,, is recursively determined 
from Dq, q = 0  ..... n - 2 .  If D o =0 ,  then D 1 and D 2 are arbitrary, and so 
on. For n = 0, 1 we have d o e-E~176 and d~ e E01t, which are the first terms of 
family (i) for N =  0 and 1. If we want to obtain the second term of (ii) we 
must require D i- = e (E~176 ~2), d l  or the relation fio.t = E o o -  02 - -  Eol = 0 
which from Eq. (3.4) is possible. For  n = 2 we have two possibilities: 

f )~02do]+ebO2t)~O2do, f102 :~0 

D2 =e(E~176 + t~/2] d2 = -'to2do, flo,2 = 0  
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(a) fio2v a0. The general solution has two terms but if we require 
d f  = (2o,2//30.2)do then Ds  = e (e~176 2~ If further d i- = 0 we find the two 
first terms of family (i) with N =  0 (if d~ va 0, then D 3 has two different 
times terms except in flOl = 0). If further dF r 0 and flo,~ = 0, then flo,2 r 0 
and we have the three first terms of family (ii). 

(b) rio,2 = 0, then necessarily flo,1 r 0 [see Eq. (3.4)] and we have the 
two first terms of family (iii) if d I = 0. 

For  n = 3, recalling that/31,3 ~ 0, we still have two possibilities 

e d m D ~ - = e  e~ d y -  ~ ~m3dm'] bm3t -- 
m = 0 /3rn,3 /] "j- m=0 ~ tim,3 for /303 va 0 

( ~,,~di- ) 
D 3 = e  (E|176 d f  fll,3 ~-t2~176 +e(E~ 2~2)'21'3dl- ' i l l , 3  for f103 = 0 

(a) /30,3 r 0. The general solution has three terms but if we require d 3 = 

~1  (~m3d~n/flrn3) then D3- = Z 1 exp(bm3 t)(}~m3df-n//3m3 ). If further d (  = 0, then 
D 3 = exp[(Eoo - 30-2) t] d 3 a number of the family (i) with N = 0. If d I r 0 
but flOl=0, then f lo3r  and b13=Eoo-30-2;  in that case D3= 
e x p [ ( E o o -  3o-2)t] d3, a member of the family (ii). 

(b) /3o3 = 0  which leads to b13 =Eol  -2o-2. If di- = 0  we have a mem- 
ber of family (iii). 

B2. F u n d a m e n t a l  S o l u t i o n s .  We seek the particular solutions 
[D n (t)] which for every n have only one time-dependant term. It turns out 
that the time appears mainly as a power of e ~2,. 

First we consider (3.7), the integral equation with dn as integration at 
infinity. We study the simple solutions dn = 0 except for n = N, N being 
either 0 or a fixed integer. In (3.7) the first D n 5 0  appears for n = N + 2  
and the integration exists when t ' ~  oo if fiNN+2 < 0. From the relations 
(3.2)-(3.5) we know for N > 0  that /3xn<0 for n > N .  For N = 0  we must 
assume that /3o2<0, from (3.2) (3.5) then the other /3on are negative for 
n > 2 values. We start with D n = ~lNee~ d N e e~ and iterating this term 
in (3.7) we find a first family of solutions: 

n - - 2  

D2(t)=e(LoN (n u)o21~dn ' flN,,d, = ~ )~q~dq (/302<0 if N = 0 )  
q - - N  

(Bla)  

Second we use the integral equation (3.6) with integration d~ at t = 0. 
Of course now the integration is always possible. However two different 
cases occur depending on whether the integrand is an exponential of a con- 
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stant, in the second case a term proportional to t appears. We find three 
different possibilities: 

(i) If d o = d { = . . ' d  N 1=0,  d ~ r  d ~ + l = 0 ,  N = 0 , 1 , 2  ..... 
D N =e~'ONtdN, then for n ~>N+2 there exists a first family of solutions 
depending only on one parameter d~ '  

n - - 2  

Dn(t)=e(N~ flNnd2= 2 2qndq (Blb)  
q=N 

For N =  0, we further require that a(0) is such that fio~ r  and take advan- 
tage of the fact that the sequence flon is decreasing [Eqs. (3.3) and (3.5)], 
fio,n < 0 for n > no as soon as there exists no with flo,~0 < 0. We remark that 
(Bla, b) represent the same family of solutions but they are obtained with 
different assumptions on fion for N =  0. 

There exists a family of solutions, called here (ii), which can 
equivalently be deduced from (3.6) or (3.7). It is obtained in (3.7) with 
ao r 0, d l r  0,/3ol = 0 and it follows that /~02 < 0, but it can also be obtained 
from (3.6). 

(ii) If d o r  d 1 r  fi01=0, or a 2 = r l - % ,  then there exists a 
second family of solutions depending on the two arbitrary parameters d o , 

d r :  
n - - 2  

D 2 ( t ) = e  ~e~176 "~ 2 Vn, d2flo,~= ~ )oq~d~, n~>2 (B2) 
q=O 

a2 = rl - r3, rio,, = - ( n  - 1)rl + nr3 - %~+ 1. The relation d [  = - c d  0 leads 
to the B.K.W. odd mode: 

n - - 2  

d7 = - C d  o ~ d~- = ( - 1 ) " C " d  o with the identity flo, C" = ~ (-1)q2q~C q 
q = 0  

(B2') 

(iii) I fdo r163  =O,d~v ~eO, N>~2, f l o u = Z l - ~ 2 N + l - N a 2 = O t h e n  
we find a two-parameter family of solutions 

D 2 = e  I E ~ 1 7 6  2+t~/~); d o arbitrary, ~0=0;  l ~ < n ~ < N - 1 ,  d 1 = 0  

n 2 )~qndq ~ N--2 
d 2 =  ~ ~r dN atbitrary, d , =  ~ )~q,,dq; 

q=O fion ' q=O (B3) 

~ 1 f~qN+l dq 
n = N + l ,  d N + l =  

0 /~0,B + I 

dN+l=O;  n>~N+2, dn:  ~ flo,;dq-~In, an: ~ rv,n dq 

Here also due to /~ON = 0 we know that no other flo. can vanish. 
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B3. Mixing Fundamental Solutions. The mixing of two fun- 
damental solutions N1 and N2, N1 <N2,  of class (i) with two arbitrary 
constant du,, du2 c a n  be obtained as a particular case of the general for- 
malism Eq. (3.9a, b): 

n 2 

D~( t )=eEo . tao .+  ~ am+l,ne[Eom (n-m)a2]t (B4a) 
N1 

n 2 n--2 

am+l,n~m,n=J'm,naOm + S "~qnam+l,q, ao .=d .  - S am+l,n ( B 4 b )  
q = m + 2  NI 

We find for the coefficients: dul , du2 arbitrary and 

ao,,=OexceptaoNl=du~, aON2=du2--aN~+l,N2, 

dul + 1 = 0 if N2 > N1 + 1 (B5b) 

n - - 2  

am, n ----- 0 except aNi + 1,n~Ui,n = ZNi, naoui + S 2qnaNi+ 1,q, i = 1, 2 
q- -Ni+2  

and for the moments 

D N~ = eEONl t dNi , On = eEEoNI- ( n -  Nl)tr2]t a N  1 + 1,n, 

NI < n < N 2 +  I, n--/:N2 (B5a) 

DN2-~-'~eEON2taoN2-[-e[E~ (N2--Nt)cr2]taNI+I,N2 

D~ = e  [E~ (n--Nz)cr2]taN2+l,n+e[Eo~vt--(n Nl)~rZ]taNl+l,n , n>/N2+2 

For the proof we substitute the coefficients relations (B5b) into (B4b) and 
verify recursively that they hol& 

B4. Examples of {~(e) Models .  We give simple examples of{r(0) 
models corresponding to /~0. :# 0 Vn class (i), /~01 = 0 class (ii), Pox = 0 for 
some N integer > 1 class (iii). 

Firstly we choose a(0) as a sum of 3 distribution functions 

i M m 

~(0) = ~ .~" Z,[O(O - 0,) + 3(0 + 0~)], ~ 2, = 1 
~ = 1  1 

M 

/~o,, = ~ Z,(1--z2)Ez~+z~+ . . .z2" -~-nz~] ,  
i = i  

Iz i l#1,  #0, cos 0~=zi, ao= i (B6) 

The simplest example is provided with M = 1 and only one Oi = 01 value for 
2.-  1 _ nz~]. If we choose which 21 = 1 and Po,.--- ( 1 - z  2) [zl + z  3 + " " z l  

z l < 0  then /~o..<0Vn and or(0) is of class (i). We notice that /~oj= 
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(1--Z 2) Zl(1--Zl) ~ 0 and in this family of rr(0) cross sections we have no 
example of class (ii). Similarly flo2 = z 1(1 - z 2) (1 - z l) 2 r 0 and in class (iii) 
we cannot  obtain here rr(0) corresponding to flo2 = 0. Fo r  n ~> 3, if we 
except the trivial Z l = 0  zero, flo, has always only one zero zl, , :  z l . 3 -  
0.3926, z,.4_~0.2696, z , .5_0.2091 which tends to 0 + when n--+ oo. With 
M =  2 in Eq. (B.6) and two 0; values, 01 and 02, we have more  freedom in 
order  to construct  a models belonging to classes (i) and (ii). However  the 
positivity of a requires 2, > 0  and 22>0. F r o m  the condit ions rio, = 0, 
O-o----- 1: 

N2 N, 
21 - -  /~2 = - -  

N1 - N2' N1 - N2' (B7a) 

N , = ( 1 - z 2 ) ( z , + z 3 +  " '  + z 2 " - ' - n z 2 ) ,  i - - 1 , 2  

a(O) > 0 is satisfied if Zl and z2 are such that  N 1 > 0 and N 2 < 0. 
For  simplicity we restrict the discussion to z2 = - Z l  and obtain 

.~,=Z1-}- Z3-} - "''zfn--l-l-rlZf .~2~___ZI-}-Z3"q- "' 'zfn-l--FIZf 
2 n - 1 )  ' 2 ( Z I ~ _ Z ~  ..  2 n - I )  ' 2(z~ +z~ + " " z  I . z  1 

fl0., = 0 (BTb) 

If flo, l = 0 ,  we find 2 , = ( 1  + z i ) / 2 > 0 ,  2 2 = ( 1 - z , ) / 2 > 0 ,  we have a 
model  for class (ii), for instance (9) for the B.K.W. odd mode. 

If /~o,2=0, we find 21=(1+z , )Z /2 ( l+z2)>O,  2 2 = ( 1 - Z l ) 2 /  
2(1 + z 2) > 0 and we find a model  of class (iii). 

Secondly we consider smooth  o(0) models: ( r=  (1/4) cos(0/2) 
Z ~  2m(COS O) m- 1. For  M = 1, 21 = 1 we find a model  of class (i): 

1 0 16 
a(0) = ~  cos ~, ao--  1, r io.1- 315' rio,, <0 ,  n>~l 

(B8) 
For  M =  2 we give a model  (71 of class (ii): 

a = 4 ( - - ~ c o s  ~ l + ~ c o s 0  , a o = l  , r io . l=0,  f l0 , ,<0,  n > l  

(B9) 

For  M =  3 we find models of class (iii) with flo,2 = 0, rio. < 0 for n > 2: 

1 0 
rr = ~ c~ ~ (zl + ~o2 cos 0 + ;~2 cos2 0), ~ o = 1 ,  /~=0,  

;ol e [0.14, 0.56] -+ rr(0) > 0 (B10) 

/~2 7 2 ~2 
T " ] -  T~ 3 = I - - ~ 1 ,  (31 ) (32) -5 - -  177}~3 = (13()32)2,  

822/39/1-2-14 
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APPENDIX  C 

We want to obtain upper bounds on 

oo 
N2(t)=~lD2(t)122~, 2. - F(n + 3/2) ( e l )  

o F ( n +  1) 

C1: Bound for h,,: We obtain the following bound 

2n<2m2. m_~A, A=lS[r(1)] -~, me[0, n--2], n>~2 (C2) 

We can write 

2n(2m)~n_ ~ 2) -~ = (2n + 1)!! [n!r(~)/~7] 

/~m = (2m + 1)!! [2(n - - m ) -  3]!! 

m ! ( n - - m -  2)! 
f l n  - -  m 2 

1l 

We notice that for n fixed and p < (n - 1 )/2, p < (n - 1)/2,/~P is increasing: 

/~p _ pp+l _ ~(2p + 1)!] [2(n - p ) -  53!!} 
- [  ( p + l ) ! ( n - p - 2 ) !  (2p+ l - n )  

It follows that /?m >//0 and finally for n ~> 2 

2 n 2, (4n 2 -  1 ) (n -2) !  ~ < - -  
2mien m- -2  20~n-- 2 (nZ-n)F(3)(2n-3)!! ~<A 

C2: Existence Proof for the Fundamenta l  Solut ions of 
Class (i): From the definition we have ~ N n ~ O  for N~a0 and 
ID2(t)k < [d2[ and consequently N2(t)< N2(0 ). We seek the conditions on 
~(0) and c (constant entering into the definition of the B.K.W. even mode) 
in order that N2(0) < ~ .  We recall 

duma0, d u + l = 0 ,  d 2 =  ~ ~-~-dq, n>~U+2, 
q = N  P'Nn 

On(t  ) = ds e [E~ (n U)o-2] tdn (C3) 

where N is 0 or and integer. We define fl=infn[flu,[ , fl-= ]/~NN+2] 5 0  for 
N # 0 ,  

Ao(/~ , o, c ) = / ~  2 (1 --c2) 3 (1 +4c2- t -  c 4) O'(0)[COS O[dO , 

Ao > 0 i f3 fixed and Icl small (C4) 
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We will show the following result: 

N2(O)<flZ2N(dN)2/AoiffalcosOIdO<m, Ao>0, f l r  (C5) 

Using the definitions of fl, 2qn we have 
n 2 

tilde-l< ~ (n-q-1)lC[n-qcq[En-q,nl ldq[ 
q N 

We multiply both sides by (2~) 1/2, introduce at the right-hand side the 
inequality (C2) for 2 n, then take the square of both sides and apply the 
Schwarz inequality: 

2nflZd 2<A ~ 2q2. q_z(n-q-1)2c2(~-q)(dq)2Bo (C6) 
q ~ N  

q = N  

1 1 Bo<Lj[Calcos012cos0Zqsin02(n q~C~dO < alcosOldO 

For all n>>.N+2 we sum (C6) adding at the end flz2~(d~)2 in both sides 
and find 

I; 1 N2(t = O) < fl2,~N(d N )2 + A 6 Icos 0] dO B I 
(c7)  

B1= ~ Z }~q(dq)2(2p-tP 2C2(p+l))=N2(O) ~" 2p -Ip2C2(p+1) 
n = 2  p + q = n - - 1  p = l  

From the definition (C1) of 2p we find 2p_ 1 "< pf ' ( l)  and 

~-.p3c2(p + c4( 1 + 4c 2 + c 4) 
1 l)= (1 -c2)  3 if [c [<l  

Subtracting the term proportional to B1 in both sides of (C7) we obtain 
N2A o < fl2,;tN(dN) 2 with Ao defined in (C4) and finally the result (C5) if 
Ao>0. 

C3: Existence Proof  for  the General  Odd B.K.W.  Solutions.  
We start with the differential system (24c) that we multiply by 2~D~-(t) and 
integrate from t = 0 to t 

2~(O2(t)) 2 =e2E~ +2 f]e 2E~ ")2.O2(t'  ) A~(t') dt' 

n 2 

Al(t )= ~, (n--q--1)[~o(t)] ~ qDq(t)CqE~_q., (C8) 
q--O 

og=ce -~2t, --Eon= 1 - -  T 2 n +  1 > 0  
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and we shall obtain two main results. 

N2(t)<oQ if N2(0)<o% 1c[<1 and fa(O) lcosOIdO<oo (C9) 

N2(t) ~ 0 if further 7 = inf(-Eon) > 0 (C10) 
Vn 

t ~ o o  

For these results we shall obtain, at an intermediate stage, an integral 
inequality 

N2(t)e 2~ < M(t) 

M(t) --= U2(0 ) + 2(15) '/2 f a [cos 0[ dO fo e2~CUz(t') H(t') dt' t 

H(t) = co2(t)[1 + co(t)]/[1 - co(t)] 3 

(C l l )  

First we notice that I A 11 < Z (n - q - 1) I col n- q h Dq I Z cq L En_ q,I where as 
in Section C2 the last sum is bounded by S a Icos 01 dO. We start from (C8), 
take the modulus of both sides, use the bound (C2) for 2n, and sum over n. 
We find 

N2(t)<e-27~N2(O)+ 2A 1/2 crlcos0 Id0 e-2Y(~-C) A2(t')dt ' 

Az(t)= ~ [D;I).~/2 Z )dq/2[Dq121p/Z-,P c~ 
n = 2  p + q = n  1 

A2 = Z 
l q = 0  

(C12) 

ID q A)q/211D p+ q + l.~p + ~/2 1< ~ 2 ~p/21pcop + x N2 

using the Schwarz inequality. We bound 2p 1 by p2F(�89 and (Cl l -C12)  
become identical if Icol<l  and H=Y~.p2o9 p+I. Second we notice that 
(C11) is equivalent to the differential inequality dM/dt < 
M[H(t) 2(15) 1/2 S o-Icos 01 dO] that we integrate and finally find for Nz(t): 

too2(t')[1 +~o(t')] dt'}) (C13) 
N2(t)<e-2~'(N2(O)exp{2(15)l/2fo [1 _ co(t,)]3 

Because the integral exists when t--+ 0% we can put infinity as the upper 
limit of integration and obtain (C9), (C10). 
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A P P E N D I X  D 

- ( B o n + B n n ) = ~ + ~ a ( O ) b , ( z ) d O ,  z = c o s 0 ,  b , = l - z 2 n - ( 1 - z 2 )  ~, 

n =  1, is a pos i t ive  i nc r ea s ing  sequence .  I t  is sufficient  to  no t i ce  tha t :  
b n + l - b n = z z n ( l  - z 2 )  + z 2 ( 1  --z2)n~0, for ]z] ~< l.  

R E F E R E N C E S  

1. H. Cornille, Stationary solutions for the Kac's model of nonlinear Boltzmann equation, 
Saclay PhT-84-45, paper delivered at the R.C.P. 264 "Probl6mes Inverses." 

2. M. Kac, Proceedings of the 3rd Berkeley Symposium on Mathematics Statistics and 
Probability, Vol. 3 (University of California Press, Berkeley, 1954), p. 111. 

3. G. E. Uhlenbeck and C. W. Ford, Lectures in Statistical Mechanics, M. Kac, ed. 
(American Mathematical Society, Providence, Rhode Island, 1963), p. 99-101. 

4. M. H. Ernst, Phys. Lett. 69A:390 (1979); Phys. Rep. 78:1 (1981); Fundamental Problems in 
Statistical Mechanics V, E.G.D. Cohen, ed. (North-Holland, Amsterdam, 1980), p. 249. 

5. V. Bobylev, Dokl. Akad. Nauk SSRR 225:1296 (1975). 
6. M. Krook and T. T. Wu, Phys. Rev. Lett. 16:1107 (1976); Phys. Fluids 20:1589 (1979). 
7. H. Cornille, J. Phys. A: Math. Gen. 17:L235 (1984). 
8. J. A. Tjon, Phys. Lett. 70A:369 (1979). 
9. H. Cornilte, C. R. Acad. Sci. Paris 298:569 (1984). 

10. M. Barnsley and H. Cornille, J. Math. Phys. 21:1176 (1980) (the fundamental solutions 
are called pure solutions in that paper). 

11. E. H. Hauge and E. Praestgaard, J. Stat. Phys. 24:21 (1981). 
12. S. Simons, Phys. Lett. 69A:239 (1978); M. H. Ernst, Phys. Rep. 78:7 (1978). 
13. H. Cornille and A. Gervois, in Inverse Problems, P. C. Sabatier (C.N.R.S., Paris, 1980), 

p. 271; J. Stat. Phys. 23:167 (1980). 


